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1. INTRODUCTION

Cross-classified data having ordered categories arise in many investiga-

tions conducted by medical, physical, natural and social scientists. Statistical

methods have been developed and continue to evolve to analyze such d.ata. Many

of these methods are tailored to answer specific questions and issues raised.

For reviewti of the literature in this area, the reader is referred to Agresti [1]

and Goodman [6].

We begin with a'general description of a problem tackled in this paper.

Let B be the Borel a - field on the real line, R and Bx1 the product a - field

on RxR. Let u be a probability measure on BxB and ui and the corresponding /

marginal probability measures on B, i.e., Ul(B) = w(BxR) and u2 (B) = u(RxB)

for every B in B. Following Lehmann [14], v is said to be a positive quadrant

%.. . . . . . , .
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dependent if

.)~ , )' > 1 c 1 2

for every c,d in R. In the jargon of random vairables, the

above notion can be rephrased as follows. Let X and Y be two

random variables with some joint probability distribution

function F. X and Y are said to be positive quadrant dependent if

PIX > c, Y > di > PIX > cl PJY > d}

for all c,d in R. For various properties of positive quadrant

dependence, see LehmannH or Eaton [3]. In this paper, we

look at the notion of positive quadrant dependence from a global

point of view. Let M denote the set of all positive
PQD

quadrant dependent probability measures p on G xG . It is

natural to think along the following lines. If M is a convex
PQD

set and compact in some decent topology, then the set of extreme

points of M will be non-empty. See Phelps To]. Moreover,
PQD

every member of M can be expressed as a mixture (in some

PQD
sense) ot extreme points of M . There are certain properties

PQD
of distributions which are preserved under mixtures. Under these

circumstances, it suffices to examine extensively the extreme

points so as to make comments on the members of M . But this
PQD

line of reasoning fails since M is not a convex set as the
PQD

the following example demonstrates.

0,
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Let u be a probability measure on ( x'O with

support contained in {(l,l), (1,2), (2,1), (2,2)). Such a

probability measure can be written as

1 2

P I Pi 2 P 

P1 1 2 P1
2 p

2 p p2

q q 1

1 2

where p =u{(i,j), i 1,2; j = 1,2; p -p (fi)), i 1,2
ii i

and q = ({j}), j = 1,2. Then u E M if and only if
j 2 PQD

P2 q2 < p 2 < p2 Aq where p2 Aq2 denotes the minimum of

p and q . For the desired example, let p and n be the
2 2

probability measures with the same support {(l,l), (1,2), (2,1),

(2,2)) given by

1 2 1 2

1 1 2/9 1/9 1/3
Un -

2 2 4/9 2/9 2/3

1 2/3 1/3 1

W and n are positive quadrant dependent but u + n is not.

iI
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We can identify some natural subsets of M as
PQD

convex sets. Let X and v be two probability measures on CB

Let M (x,v) be the collection of all probability measures
PQD

in M such that p = x and = v, i.e.,
PQD 1 2

M (X,) = { M ; U = X and u = vi.
PQD PQD 1 2

In Section 2, we show that M (x,v) is a compact convex set
PQD

in the weak topology on the space of all probability measures

M on (B xB .Using this result, one obtains a decomposition of

M as
PQD

M =UU M (X'V)
PQD X v PQO

where the union is taken over all probability measures x , v

on

In Section 3, we concentrate on the case when both

and v have finite support. We describe a method of

enumerating all extreme points of M (X,v) with the help of
PQD

some examples. In Section 4, using the structure of M (Xv),
PQD

we compare the performance of some tests for testing independence

against strict positive quadrant dependence.

2. Main Results

In this section, we show that for any two probability

measures A and v on G, M (\,u) is compact and convex.
PQD
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We need the following definitions and results in this connection.

Let (X,d) be a Polish space, i.e., a complete

separable metric space. Let be the Borel a-field on X
X

and M the space of all probability measures on X MX isXx X

equipped with weak topology.

Definition 1. A subset S of M is said to be uniformlyx
tight if for every C >0 there exists a compact subset C of

X such that

V (C) > l-F for every u in S.

The following is known as Prohorov's theorem.

Proposition 2 A subset S of M is relatively compact if
x

and only if S is uniformly tight. S is compact if and only if

S is closed and uniformly tight.

Proof. See Billingsley [ , Theorems 6.1 and 6.2, p.37].

Theorem 3 Let M(X,v) be the collection of all probability

measures I on Ca x(B such that 4 X and U :
1 2

Then M(x,v) is compact.

Proof. It is obvious that M(X,v) is a closed subset of M

the space of all probability measures on A]. x( . We show that

M(X,v) is uniformly tight. Let c > 0. There exist compact

subsets C and C of R such that X(Cc) < £/2 and
1 2 1

V(Cc) < £/2. C xC is a compact subset of RxR. Let u c M(X,v).
2 1 2

Then

-o -a.. - a
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UE( xC )c < U(ClXR U. RxC 2 )

< (CCxR) + (RxC2)

1 C )  + 'j2 C2)
CC

C + C2)

< E:

This completes the proof in view of Proposition 2.

The following result is the main result of this section.

Theorem 4 For any given probability measures x and v on > ,

M p(,v) is compact and convex.
PQ 0

Proof. MpQD(xv) is a closed subset of M(x,v) follows from
n

the following observation. Let jj , n>l be a sequence in

M Q ( ,V) converging weakly to a u in M(X,v). Then for anyPQD

c,d in R, (See Billingsley 12, p. 11i),

u{-c, )x d, )} > lim sup n nf c,-)xld,-)}

> x{jIC,ao)}v{fd,c)}.

Hence u MpQD(xv). This implies that MpQD(x v) is compact.

We now show that MpQD(xv) is convex. Let 'i,n E MpQD(YV)

and 0 < < 1. Then for any cd in R,
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(ali + (1-ac.- d.- } -)T f.-x[d.-c

= [cx[d,-}) + (l-a)T{[c,w)x~d,)} -

S{ c, )} { [d, -) }

> x {[c -} {Ed,)} + O.

- c I {Cc)}{ Edv) 0.

Consequently, c. + (l-a)n E MpQD(XD v). This completes the

proof.
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3. Extreme Points

In this section, we assume that the support of x is {1,2,...,m}

and that of v is {1,2,...,n}. Let pi . ({i}), i = 1,2,...,m and q. =

v({j}), j = 1,2,-..,n. In this case, we use the suggestive notation

MpQp(PlP 2 , pm; ql,q92 .qn) for MpQD(xv). Any 1 in MpQD(A v) can

be written in the following form

P11 P12 " " Pln Pl

P21 P22  P2n P2

Pml Pm2 Pmn PM

ql q2  q

where Pij =U{(i,j)}, i = 1,2,.-.,m; j = 1,2,.-.,n. In other words,

Mp ,P,-",p; q,q,-..,qn) is the collection of all matrices (pij)

of order mxn such that each Pij > 0, row sums PI'P2'' '* pm' column sums

ql,q2,.--,q n and the joint distribution is positive quadrant dependent. The

compact convex set MpQD(pl,P 2,-*.pm; qljq2-.q n ) has a finite number of

extreme points. We now describe a method of enumerating the extreme points

in somde special cases for illustration from which the general technique can

easily be perceived. As we shall see shortly in Section 4, the knowledge

of extreme points has considerable bearing on the power of tests of indepen-

dence against strict positive quadrant dependence.

... ..... "-' ... -. • °
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Example 1. m = 2 and n = 2.

Let p1,P2 ; ql,q 2  be specified such that each of p1 ,P2 ql,ql2  is

positive and PI + P2  1 = + q2. It can be easily verified that if a

matrix

P11 P12 1

P21 P22

with non-negative entries, row sums plP 2 and column sums ql,q 2  belongs

to MPQD(PlP 2 ; ql,q 2 ), then

P2q2  ' P22 A q2 "

Conversely, if the number P22  satisfies the above inequality, then the matrix

P1"q2+P22 q 2"P22

P2"P22 P22 j

belongs to MpQD(PlP 2 ; ql,q 2 ). There are only two extreme points of

MpQD(PlP 2 ; ql,q 2 ). These are given by

p1q, p1 2] q, q1 q2_P2
and if P2 A q2 = P2'

p1ql p~q2  p1  0

and if P2 A q2 = q2"
~P2ql P2q2J ~ 2-q2 q2]if 2 A

Every member of MpQD(PlP 2; ql,q 2) is a convex combination of these two

extreme points.

°*,
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Example 2 m 2 and n = 3.

Let p1 ,P 2 ,ql,q 2 ,q 3  be five positive numbers satisfying P1 + P2 =

1 = ql + + q3 " If the matrix (pij) belongs to MPQD(PlP2; ql,q 2,q3 ), then

P2q3  P23  P2 Aq 3  and

(P2q2 + P2q3 ) v P23 f P22 + P23  P2 A (q2 + P23 )'

where a V b indicates the maximum of the numbers a and b. Conversely,

i P and P23  are two numbers satisfying the above inequalities, then

the matrix

Lq1-P2+P22+P23  q2-P22  q3-P23 1
P2"P22"P23 P22 P23

belongs to MpQD(PlP 2 ; ql,q 2 ,q3). The impact of this observation is that

the numbers P22 and P23  in the matrix (pij) determine whether the matrix
(pij) belongs to MPQD(PlP 2 ; ql,q 2 ,q3 ) or not. These two inequalities

determine a simplex in the P22 - P23  plane. As a simple illustration, take

P1 = P2 = ; ql = q2 = q3 = 1/3. The determining inequalities are

1/6 < P23  < 1/3 and

/3 = v 1/3 < P22 + P23  P A (1/3 + p23) = .

These inequalities determine the following simplex in the P22  P23  plane.

............................ ...... ,,..- .... . ..........



p22

1/3P

1/6 P1  3

01 1/6 1/3 23

There are four extreme points of the set M PQD(1/2,1/ 2; 1/3,1/3,1/3)

given by

L1/6 1/6 1161 1/6 1/3
1/6 116 1/6j, L1/6 0 1/31

1/3 1/6 0 1/3 0 1/6][0 1/6 1/3] 0 1/3 1/6]

corresponding to the four points P1 . P 2, P 3  P 4  respecti~ely. Every

member of M Q(1/2,1/2; 1/3,1/3,1/3) is a convex combination of these

four extreme points.
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Example 3 m = 3 and n = 4.

Let plP 2,P3,qlq 2 q3,q4 be seven positive numbers satisfying

P1 + ++ P3  q 2 + q q4 " If (Pij) e MpQD(PlP2,P3; ql,q2,q3,q4).

then

(1) P3q4  P34  < P3 A q4,

(2) P34 V (p3q3+p3q4 ) P33 + P34  P3 A (q3+P34 ),

(3) P34 V (p2q4+p3q4 ) P24 + P34  4 A

(4) (P33+P34 ) V (p3q2+p3q3+p3q4) P32 + P33 + P34

P3 A (q2+P33+P34 ),

(5) p33+P24+P34) V (p2q3+p2q4+p3q3+p3q4 ) P23 + P24 + P33 + P34

< (p2+P33+P34 ) A (q3+P24+P34 ),

and

(6) (P23+P24+P34+P32+P33 ) V (p2q2+p2q3+p2q4+p3q2+p3q3+p3q4)

P22 + P23 + P24 + P32 + P3 3 + P34

(p2+P32+P33+P34) A (q2+P23+P24+P33+P34 ).

Conversely, if P34 ' P33 ' P24 1 P32 - P23 ' P22 are six numbers satisfying the

above inequalities, then these six numbers determine uniquely a member of

M pQD(PlP 2 ,P3 ; ql,q 2 ,q3,q4 ). We explain how to enumerate all extreme points

of the convex set in the simple example P1 = P2  P3 = 1/3 and ql = q2 =

q3 = q4 = 1/4. (The technique in the general case is similar to this special

example.) The six inequalities above now become

* *.
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(1) 1/12 < P34  <  3/12,

(2) P34 V 2/12 < P33 + P34  < 4/12 A (3/12 + P34 ) = 4/12,

(3) P34 V 2/12 < P24 + P34  < 3/12 A (4/12 + P34 ) = 3/12,

(4) (P33 + P34 ) V 3/12 < P32 + P33 + P34  < 4/12 A (3/12 + P33 + P34 )

= 4/12,

(5) (P33 + P24 + P34 ) V 4/12 < P23 + P24 + P33 + P34

(4/12 + P33 + P34 ) A (3/12 + P24 + P34 ) = 3/12 + P24 + P34 '

(6) (P2 3 + P32 + p33 + P24 + P34 ) V 6/12 <

P22 + P23 + P24 + P32 + P33 + P3 4

(4/12 + P32 + P33 + P34 ) A (3/12 + P23 + P24 + P33 + P34 )"

The first step in the determination of extreme points is to get

rid of the maximum and minimum symbols by splitting some or all inequalities

above. For example, inequality (1) can be written as 1/12 < P34  < 2/12

and 2/12 < P34  < 3/12. Inequality (3) can be written as P34 V 2/12 <

p33 + P34  < 3/12 and 3/12 < P33 + P34  < 4/12. The above set of

inequalities are equivalent to the following four sets of inequalities.

1 (1) 1/12 < P34  < 2/12

(2) 2/12 - P33 + P34  < 3/12

(3) 2/12 < P24 + P34 < 3/12

(4) 3/12 < P32 + P33 + P34  < 4/12
(5) P33 P34

(5) Same as above

(6) Same as above

MI", ,r ' ' , ' -.: .-... ..... .. .. ..-.-... ..... .... •, .'.- -' .- ...,., .' ,,, .-
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II (1) 1/12 < P34  < 2/12

(2) 3/12 < P33 + P34  < 4/12

(3) 2/12 < P24 + P34  < 3/12

(4) P33 + P34 + P 33 + P34  S 4/12

(5) Same as above

(6) Same as above

Ill (1) 2/12 < P34  < 3/12

(2) P34  < P33 + P34  , 3/12

(3) P34  < P24 + P34  < 3/12

(4) 3/12 , P32 + P33 + P34  4/12

(5) Same as above

(6) Same as above

IV (1) 2/12 < P34  < 3/12

(2) 3/12 < P33 + P34 f 4/12

(3) P34  < P24 + P34  < 3/12

(4) P33 + P34 f P32 + P33 + P3 4  < 4/12

(5) Same as above

(6) Same as above

4~

* . . . . - U .
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The maximum and minimum symbols in inequalities (5) and (6) stay

put in spite of splitting the inequalities (1) and (2). In order to neutralize

these symbols, we introduce the following auxiliary inequalities.

(2,3) P33 + P24 + P34  < 4/12

or

4/12 < P33 + P2 4 + P34

(2,3,4,5) P23 + P32 + P33 + P24 + P34 < 6/12

or

6/12 < P2 3 + P3 2 + P3 3 + P2 4 + P3 4

(4,5) 4/12 + P32 + P33 + P34  < 3/12 + P23 + P24 + P33 + P34

or

3/12 + P2 3 + P2 4 + P33 + P3 4  < 4/12 + P3 2 + P3 3 + P3 4.

Now, a choice of each of the auxiliary inequalities (2,3), (2,3,4,5)

and (4,5) is appended to each set of the inequalities I, II, III and IV. This
JP

would generate 32 sets of inequalities equivalent to the four sets I, II, III

and IV of inequalities. To save space, we will not reproduce these 32 sets

of inequalities. A sample set of inequalities is produced below for further

discussion.

-. 4'
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A sample set of inequalities chosen from 32 sets of inequlities described above

(1) 2/12 < P34  < 3/12

(2) 3/12 < P33 + P34 . 4/12

(3) P34 < P24 + P34  < 3/12

(2,3) P33 + P24  P34  < 4/12

(4) P33 + P34 32 + P33 + P34 < 4/12

(2,3,4,5) 6/12 < P23 + P32 + P33 + P24 + P34

(5) 4/12 < P23 + P24 + P33 + P34 1. 3/12 + P24 + P34

54 (4,5) 4/12 + P3 2 + P3 3 + P3 4  < 3/12 + P2 3 + P24 + P3 3 + P34

(6) P23 + P32 + P33 + P24 + P34  < P22 + P23 + P24 + P32 + P33 + P34

< 4/12 + P3 2 + P3 3 + P34.

The above set of inequalities is obtained from the set IV of

inequalities by appending the first choice of (2,3), the second choice of

(2,3,4,5) and the first choice of (4,5).

In order to obtain a member of MpQD (1/3,1/3,1/3; 1/4,1/4,1/4,1/4)

we proceed as follows. Set the central expression in each of the main six

inequalities equal to the quantity either on the left or the right of the

inequalities and then solve the system of equations thus arize in the unknowns

P34 ' P33' P241 P32 ' P2 3 ' P22 making sure that 
the constraints imposed by

the auxiliary inequalities are satisfied.These system of equations are easy

to solve. The solution will give a member of MPQD(1/3,1/3,1/3; 1/4,1/4,1/4,1/4).
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Generate members of MPQD(1/3,1/3,1/3; 1/4,1/4,1/4,1/4) by following

the above procedure for each set of the 32 sets of inequalities. The set of

extreme points of the convex set of interest is a subset of these solutions.

There will be a large amount of duplicates and some of the solutions obtained

are already convex combinations of other solutions. After considerable amount

of weeding, we got the following matrices as the entire collection of extreme

points of the convex set MpQD(1/3.1/3,1/3; 1/4,1/4,1/4,1/4).

1. 1 /12 1/12 1/12 2. 2/12 0 1/12 1/12

1/12 1/12 1/12 1/12 0 2/12 1/12 1/12

1/12 1/12 1/12 1/12 11/12 1/12 1/12 1/12

3. 1/12 1/12 1/12 1/121 4. 2/12 0 1/12 1/121

21 2/12 1/12 1/12 1/12 1/12 1/12 1/12

112 1/12 1/12 0 2/12 1/12 1/12J

5. -3/12 0 0 11121 6. [1/12 2/12 0 1112--

0 1/12 2/12 1/12 1/12 0 2/12 1112~

o 2/12 1/12 1/12 1/12 1/12 1/12 1/12,

7. 2/12 1/12 0 1/12 8. 3 1 / 112 0 0

0 1/12 2/12 1/12 0 0 2/12 2/12

1/12 1/12 1/12 1/12- Lo 1/12 1/12_

9. 2112 0 2/12 01 10. ~1112 1/12 2/12 0

1112 1/12 0 2/12 2/12 0 0 2/12

0 2/12 1/12 1/12 L 2/12 1/12 1/12
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11 1/12 2/12 0 1/12 12. 0 0 1/12

.0 01211 0F312 /1222/12 1/12 0 1/12 0 3/12 0 1/

L0 0 3/12 1/12 La 0 3/1 1/12J1

13. [1/12 0 2/12 1/12- 14. [1/12 2/12 0 1/121

1/12 2/12 1/12 0 jj1/12 0 3/12 0

L1/12 1/12 0 2/12L 1/12 1/12 0 2/12-]

15. 2/12 1/12 0 1/12 16. 1/12 1/12 1/12 1/12

0 1/12 3/12 0 2112 0 21221

%.1112 1/12 0 2/12 212 0 2/12,

17. [2/12 0 1/12 1/123 18. [2/12 1/12 0 1/12'

19. 1/12 2/12 1/12 0 12. 1212 2 1/12 0

1/12 0 2/12 1/12 1/12 2/12 1/12

L1 /12 1/12 0 2/12] 1/12 1/12 0 2/1

o 0 3/12 1/12 1 1112 /12 1/12

L1 /12 1/12 0 2/12 2/12 0 2/ 12

23 [13/12 1/12 1 4 1/12 1/12 1/12 1/12

2/12 0 1/12 1/12 1/12 1/12 2/12 0

L0 2/12 0 2/12 P/12 1/12 0 2112j
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25. 2/12 0 1/12 1/12 26. [2/12 0 1/12 1/12

0 2/12 2/12 0 1/12 1/12 2/12 0

L1/12 1/12 0 2/12 0 2/12 0 2/12

27. 1/12 1/12 2/12 0o 28. -1/12 3/12 0 0 1
0 2/12 1/12 1/12 0 0 3/12 1/12

L 2/12 0 0 2/12 2/12 0 0 2/12

29. 2/12 0 1/12 1/121 30. [1/12 2/12 0 1/121

1/12 3/12 0 0 2/12 1/12 1/12 0

0 0 2012 2112 0 2/12 2/12

31. 0 2/12 1/12 1/121 32. [1/12 1/12 2/12 0

3/12 0 2/12 1/12 0 0 3/12

L 0 3/ 11/12 0 1/12 0 3/12

33. 2/12 0 2/12 0 134. [1112 3/12 0 01

1/12 0 0 1/12 0 0 3/121

L 12 0 3/12 112 0 [1 2 0 3/12

35. 1112 0 3/12 036. 1112 2112 1/12 0 1
2/12 2/12 0 0 2/12 0 2/12 0

0 1/12 0 3/12 L 1/12 0 3/12

37. 03/12 0 111 38. [1/12 3/12 0 0 1
0 2/12 2/12 0 2/12 0 2/12 0

0 1/12 0 3/12-J 0 0 1/12 3/12
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39. 2/12 2/12 0 0

0 0 1/12 3/12

4. Testing independence against strict positive quadrant dependence

Let X and Y be two random variables with known marginal

distributions and unknown joint distribution. We want to test the hypothesis

that X and Y are independent against the hypothesis that they are strictly posi

tive quadrant dependent. By strict positive quadrant dependence we mean positive

quadrant dependence but not independence. The data consist of N independent

realizations of the vector (X,Y). Let T be a test proposed for testing

the hyposthesis of independence based on the given data. Let x be the

distribution of X and v that of Y. Let MpQD( ,v) be the collection

of all bivariate distributions with fixed marginals x and v which are

positive quadrant dependent. The power function of the test T can be

defined formally as follows.

B( ) : Pr{ T rejects the null hypothesis / u!T

for in MpQD(x,). The above probability is computed when the joint
dQ
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distribution of X and Y is u. The calculation of the power function

of the test T whose domain of definition is MpQD(xv) is very tedious.

Moreover, if we wish to compare the performance of two tests to discriminate

the null hypothesis of independence against the alternative hypothesis of

strict positive quadrant dependence, we need to compare their power functions.

This comparison then becomes doubly more difficult to achieve. But the

following theorem asserts that it suffices to compare the powers at the

extreme points of MpQD(Xv) only.

Theorem 5 Let , ,.,", 2 k be members of MPQD(xv) such

that u = 1 + 2 + + 0 k for some cI, 2 ) " " ' k 0

k
with Z = I1. Then

i=lI

k
i=1

The above result can be used as follows. Suppose each of X and Y takes

finitely many values. Then the convex set MPQD(xv) has finitely many

extreme points and every member of MPQD(,V) can be written as a convex

combination of these extreme points. Then the power of the test T

_ -. .. ...
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evaluated at any given u in MpQD(Xv) is precisely the same convex

combination of the powers of the test evaluated at each of the extreme points.

This result also points out that in order to compare the performance of

two given tests, it suffices to compare the powers evaluated at the extreme

points. As an illustration, we consider the case when X takes values 1 and 2,

and Y takes values 1, 2 and 3. Let nij = total number of (X,Y)'s

with X = i and Y = j, i = 1,2 and j = 1,2,3. The data can be arranged

in tile form of a contingency table as follows.

n ni n12 n13

• 21 n22 n23

In this section, we compare the performance of two tests for testing

the null hypothesis of independence against the alternative of strict positive

quadrant dependence in the context of 2 x 3 contingency tables above.

T1  Test based-on gamma ratio

Let the bivariate distribution of X and Y be given by

PL11  P12  P13]

221 P22  P23-

The Gamma Ratio (see Goodman and Kruskal F25]) of X ann Y is defined by

_ c - TdY _

C + d'

where 71c = 2p11(P22 + P23 ) + 2P12P13  and Rd = 2P13 (P21 + P22 ) + 2P12P21.

One can show that y = 0 if X and Y are independent. See

S... ..- "........,,.... . --.-. ...-..... ,.'-... .,. ----- ---... '--.-•
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Agresti (1984, p.160). One can also show that y > 0 if X and Y are

positive quadrant dependent. An estimate of y based on the sample given

above is given by

C- D

C +D

where C = The total number of concordant pairs = n11(n22 + n23 ) + n12n23

and D = The total number of discordant pairs = n13 (n21 + n22 ) + n12n21.
A

The following is a natural test based on y for testing the above null

hypothesis against the specific alternative mentioned thereby.

Test T : Reject the null hypothesis if y > a.

T2 : Test based on eigen values

Let the marginal distribution of X be given by p, and P2. and

that of Y by q1 , q2 and q3. Let

Pll P12  P13

Q 11 12

P21  P22  P23

V7291 vP7 V29

TLet K and K2 be the eigen values of QQT, where T denotes

operation transpose on matrices. We give some properties of these eigen values

below. For further details, see Lancaster [11] and [12], O'Neill ([17], [18],

ahd [19]).

-,

. .. --
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Properties

1. One of the eigen values is always equals unity. Let us use K,

for this eigen value.

2. If X and Y are independent, K 2 = 0.

3. If X and Y are strictly positive quadrant dependent, then K 2 > 0.

We estimate K1 + K 2 based on the data given above as follows.

Let

n12  n13N; N v7172 N/p
B -- 1

Sn 21 n22 n3

-2 -2 BBT
Let K 1 and K 2  be the eigen values of BBT . Then we propose K K 1 + K 2

as an estimator of K1 + K

Test T2  Reject the null hypothesis if K > a.

We discuss the performance of these two tests in the case of two

specific examples given below.

Example I P1 
= P2 = 1/2 and q= q2 

= q3 = 1/3.

Example 2 P1 = 1/4, P2 = 3/4 and q, = 1/2, q2 = 1/4, q3 = 1/4.
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* -Let us now elaborate on some of the properties of the eigen

T Tvalues of QQ . The second eigen value of QQ , 2, can be worked out

explicitly.

(PllP22 - P1 2p21
)
2  (PlI P 23 -P13P21

) 2K = + +

2 pIP 2 qlq 2  plP 2 qlq 3

(P12P23 - P13P22

.P2P2q2q3

From this it follows that K2 = 0 if and only if X and Y are independent.

At this juncture, we want to make some remarks on the definition

of the matrix B above. In order to develop an estimator of <2 ' it is

natural to divide each frequency nij in B by the square root of the

product of the corresponding marginal totals ni. and n .. See O'Neill

([17], [181, [191). If we had proceeded as outlined by O'Neill, one of the

eigen values of BBT would always be equal to unity. In our definition of

TB, it is not true that one of the eigen values of BE would always be

equal to unity. Since we know the marginal probability laws of X and Y,

we need to estimate only p. 's by n ./N's. This what motivated us

to define the matrix B the way it was defined above. However, in view of

the above formula for K 2 ' one could estimate K2  directly without having

to define the matrix B. Accordingly, let

- (n11n22 - n 1 2 n 2 1 ) 2 (n11n2 3 - n12n2 1) 2

K2  4 + 4 +
N plP 2qlq 2  N plP 2qlq 3

(n1 2n23 - n13n22)

4

q q
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We can build a test based on the statistic K2"

Test T3: Reject the null hypothesis if K2 >-a.

We discuss the performance of these three tests in the case of two

specific examples given below.

Example 1 P1 = P2 = 1/2 and ql = q2 = 3 = 1/3.

Example 2 P1 = 1/4, P2 = 3/4 and q= 1/2, q2 = 1/4, q3 = 1/4.

The performance of T1 and T3 was compared in detail in Subramanyam and

Bhaskara Rao [12]. We now compare the performance of the tests T1 , T2 and T3

together under the level of significance a = 0001, 0.025, 0.05 and N = 15, 20

and 25. The exact distribution of y, K and K2 is evaluated for each of the

sample sizes N = 15, 20 and 25 and the power of the tests T1, T2 and T3 is

evaluated at each of the extreme point distributions of the above examples using

these exact distributions. The graphs*of these distributions are given at the

end of this section. Nguyen and Sampson [8] evaluated the powers of tests based

on some other statistics at some specific alternative distributions by simulating

these distributions.

f.

, *The authors wish to thank Ron Chao for his valuable help in the computations.
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Example No. Extreme Points K 2

1. 1/ ]/ 001IL/6 1/6 1/6

[1/6 1/3 03] 1/2 2/3

P2  = /6

/3 1/6 0 2/3
P3  = 1/6

r/ 3 0 1/6] 1/2 2/3

4 0 1/3 1/6j

2. =F2/16 1/16 6/~ 0 0

=.L6/16 3/16 3/1

[2/16 2/16 0 1/4 1/6
" 6 L6/16 2/16 4/16

[4/16 0 0 1 1/3

7 L4/16 4/16 4/16]

[/16 0 1,/16 4/10 /8
P8 L5/16 4/16 3/16]

* * . . . - e. . . .** . % -. . .... * .*.. . .. .. * **%,*~ .- - - - .. . . . . . . ..
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Conclusions

1, The power of the test T1 dominates the power of the other two tests

at the extreme point distribution P3 in Example 1 and P7 in Example 2.

This is not surprising as the Gamma Ratio achieves the perfect value

unity under P3 in Example 1 and P7 in Example 2.

2. On the whole T2 seems to perform well in comparison with the other

two tests. Even under the distribution P3 in Example 1 and P7 in

Example 2, T2 is not overpowered by T1.

3. Some extensive studies are needed to be carried out to see whether

T 2 is preferrable to the other two under different sets of marginal

distributions.

• 1
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GRAPHS OF THE DISTRIBUTIONS OF Y FOR N= 10,15,20,25 UNDER P1 AND P2 -"

.08k3
.0.4 ... ' •i . . . .I . . -

7 .144

.. 108

.032

M0MA,. .072
-. 2 -. 2 -.24 . .036

Distribution of y on p NIO- -1.2 -. 72 -24 .24 . ,72 1..

Distribution of on P N=iO

.054043...................................... .. 067 .03 06
.. 032 .. 4

" " ". 040
.021

.. 027

-1.2 -. 72 -.24 24 .72 7. 7 ,
Distribution of on P1N M -1.2 L -.72 -.24 .24 .72

Distribution of Y on P2 N=i5
I ... .. ................. .... .......... . .042.0

* .033

.2 
.032

7..02

CL .008

C .v08

* I. .008 .016

-1.2 -. 72 -24 .24 .72 I.S...1.0
* ~Distribution of on P1 N-20-12 .7 -24*.2 .7

PI -1.2 -72 -. 24 .24 .72 i

Distribution of on P 2 N=20

'.....- - " " " " " -- ' . -- "--.038

*.030

*.028

m 7 -.. 015

-M4

C __________ .007 j.1
-1.2 -72 -~ 2 7

Ditiuto + n-1.2 -.72 -.24 .24 .72 I.S.

Distribution of *~on P,~ N=25



- , . . . .

Sl

-33-

GRAPHS OF THE DISTRIBUTIONS OF y FOR N= 10,15,20,25 UNDER P 3 AND P4.
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GRAPHS OF THE DISTRIBUTIONS OF FOR N= 10,15,20,25 UNDER P7 AND P 8.

.9

i.i:
!/~ ~~~~ ~~ .76 .. ' "..'..." "

Z 7 7.57
.. T7 88

.. 38
. ,192

I I .. 1... _ _ _ __.. -_ _..09P7~ . .096,-2 i'2
12 -. 72 -. 24 .24 "712 >;L9 .i-P. 0
Dist,-bution of on P7 N-O -1.2 -.72 -,24 -.24 .72

Distribution of Y on P8 N=tO

......................................- ,3

.384~.8

4(~ [LF .

-1.2 -.72 -.24 -.24 .72 1..
Distribution of on P N=i5 -1.2 -22 -.24 4 ,72 .v"

Distribution of " on P8 N=I5

.224

- .4_ € -i .ii?

- .2

-1.2 -.72 -.24 .24 .72 i.2' ."

istribution of on P7 N=20 -1.2 -.72 -.2 .24 .72 1.
Distribution of or, P7 N=20

-.I . L ...' ''I i '7- .12

.4

C . " "

-1.2 - 2 -,24 .24 r7 I',2 '

Dtstrioution o4 on P N=252-4 .4 - 2
Dt'u tion of nP8 IN=

.. . . . . . . . . . . . .P

. . . . . .. . . . .



-36-

GRAPHS OF THE DISTRIBUTIONS OF 1= <1+ <2 FOR N= 10,15,20,25 UNDER P1 AND P2"
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GRAPHS OF THE DISTRIBUTIONS OF K= < 1 
+  2 FOR N= 10,15,20,25 UNDER P 3 AND 4
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GRAPHS OF THE DISTRIBUTIONS OF K+ K + '2 FOR N= 10,15,20,25 UNDER P5 AND P6"

.098

.078 .0

.T7.058 6..

.039 -0.

0. ALA--
5.6 .08 . 6 2.04 2.52 3. . 1.48 1.96 2.44 2.92 3

Distribution of <on P5 N=iO Distribution of< on P6 NmtO

: : .06 O E0

7 .045 3 , .04

~JJ.1 015 02

.6 1.08 1.56 2.04 2.52 3. 1. 1.48 1.56 2.44 2.92 3. 4 '

Distribution of K on P5 N=15 Distribution of < on P6 N=15

T .062.

.049 .05

..037 7.3

".024 .02

" .. O2 7 E-6 1. L08' . .

1.56 , 2.04 2.52 3. 1. t.48 1.96 ^2.44 2.92 3.
Distribution of < on P5 N=20 Distribution of 'K On P6 N=20

.075 ................ .05-

7 .06 7 .04-

.. 03 M. 2

7 .015 ML il

.6 :.8 1.5 2.04 2 .52 3.o. 1. 1.48 1.96 2.44 2.92 3..
Distribution of * on P5 N=25 Distribution of < on P6  N=25

. .. ,, . .... ,... ........ i.....~. ....
"'-'S'' * -' *.'' .'''* '*. '-. '*... .. .. "" ", " . . . .. . . . . . . .l . .. -.. ** i



-39-

GRAPHS OF THE DISTRIBUTIONS OF " tK+ < FOR N= 10,15,20,25 UNDER P and P
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GRAPHS OF THE DISTRIBUTIONS OF K2 FOR N= 10,15,20,25 UNDER P1 AND P2'
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GRAPHS OF THE DISTRIBUTIONS OF 2 FOR N= 10,15,20,25 UNDER P3 AND P4.

.0a . .. .068

.054 .054

. . .040 7 .040

.. 027 Q~A)7

.. 013 .01On

-. 2 .32 .84 J.36 t.8-.2 .32 .4 1,23 1. .
Distribution of K 2  an P 3 N-LO Distribution of on I4 N=iO

.075 - . .075

17.06 
.06

4T .045 . .045
-. 03 .03

.005 CIhL~~f.1
-.2 .32 .84 1 t.88. . -8 ..2.

Distribution of <2 on P3 N-15 Distribution of <2 on P4 N-t0

.05 F .......... .05

7 .04 .04

.03 . ,35

.02 .02
.. 0i7 .01

-.2 .32 .84 1. 6 1.88 .. -. 2 .32 .t4 1. 1.88 2.
Distri bution of 2 on P N=20 Distribution of K2 on N=25

....................... 044 .044--

.035 .3

.. 026 -T7.2

.001 0

.008CL.0

Dsrbtoof on P3 Nw25 Distribution of o P N=25

Di t i u i n o - I

.. . . . . . . . .. . . .



-42-

GRAPHS OF THE DISTRIBUTIONS OF <2 FOR N= 10,15,20,25 UNDER P5 and P6.
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GRAPHS OF THE DISTRIBUTIONS OF K 2 FOR N=10,15,20,25 UNDER P7 and P8'
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5. Inference on the structure of dependence

2
In two-way contingency tables, the 2 test for independence has

been widely used. When the test for independence is rejected, it is of

interest to study the structure of dependence between the&+1 rows and b+1 columns.

In this section, we write the matrices F = (f ij) and B = (bij) in terms

of their ei~rnvalues and eigenvectors by singular value decomposition;

here fij = Pij// bij = nij" 'i Pi = Pi + + =

Plj + ".. + P a+l,j' ni.= nil + ... + ni,b+l and n,j= n l + ...- + na+l, j

Taking advantage of the above decomposition, we propose procedures to

find out as to which of the last t eigenvalues of FF' are zero. The

distribution theory associated with the above procedures are also in-

vestigated. Some aspects of the above problem were discussed by O'Neill

([171, [181, [l i). The problem of determination of the rank of

F is discussed in a forthcoming paper of Z.D. Bai, P.R. Krishnaiah and

L.C. Zhao from the point of view of model selection using an information

theoretic criterion. The above authors also established the strong con-
a+1 b+1

sistency of their procedure. In this section, we use the notation n= ij
i=1 j=1

is fixed and the marqinal totals n. and n are random.
10..

Consider the model

Pij = Piqjij (5.1)

i = 1, 2, ... , a + 1, j = 1, 2, ... , b + I. Without losing generality we

assume that a < b. Under the above model, it is of interest to test for

the structure of ;ij" From singular value decomposition of a matrix, it

is known (e.g., see Lancaster F12]) that

a
F = ' + (5*. *)

0o0 0 o uuqu (5.2)

u11: l
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where 60 > 61 > " > 6a are the eigenvalues of F, 6o =1, Eu is the0 a u
2eigenvector of FF' corresponding to 6u and n* is the eigenvector of

F'F corresponding to 62. In (5.2)S U"

_* : (piul .. 'Pa + u,a+l

=1 (/qul (5.3)
_u _Tnul " vrqb+l u,b+l

o1 E o,a+l = 1, oo,b+l = 1.

We are interested in finding out as to how many 6 's are equal to zero.% U

This problem is analogous to the problem of studying the structure of

interaction term in two-way classification model with one observation per

cell. So, we will briefly discuss the above model.

Let

E(xij) + (xi + j + A.. (5.4)

for i = 1, 2, ... , (a + 1), j = 1, 2, ... , (b + 1).

Zi = j TA. ! ij Ai = 0.
i ~ A j 0.

Also ii, ail Bj and Aij respectively denote the general mean, i-th row

effect, j-th column effect, and interaction in i-th row and j-th column,

Also, let A (A..) and a < b. We assume that x..'s are distributed in-

2
dependentally and with variance a . The problem of testing the hypothe-

sis A = 0 was first considered by Fisher and MacKenzie [4], and later by

Williams: [23], Tukey [221 and others when the underlying distribution is

normal. Fisher and MacKenzie [4] considered this problem using eige.-

values of certain matrix. For a review of the literature, the reader is
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,a

referred to Krishnaiah and Yochmowitz [101. Now, let E(xij) :

log Pij' U= log c, a i = log pit Bj : log pj and Aij = log 6ij. Then

the model (5.4) can be written as

Pij = cPiqjij" (5.5)

But, here we do not assume that the conditions (5.5) are satisfied. But,

log ('Pi) = log (sq.). 0. (5.6)

We may assume that c = 1 (i.e., p = 0). We can write (5.6) as

"" Pij =  cPiqjexp(ni j)(5.7)

and express n = (ij) in terms of its eigenvalues and eigenvectors using

spectral decomposition of a matrix. Then, we can draw inference on the

rank of n. This problem is different from the problem of drawing in-

ference on the rank of except for the special case when the rank of

n is zero. This special case is equivalent to the statement that the

rank of is one. In studying the interaction term in two-way classifi-

cation model, Tukey [22] and Mandel [15] assumed certain structures

on interaction term. We can assume similar structures on the models

(5.6) and (5.7). As far as the models (5.6) and (5.7) are concerned,

they are analogous to the well known two-way classification model with

interaction and one observation per cell. But, the problems of estima-

tion and distributions of test statistics are of different nature. In

general we may also consider models of the form

Pij f(ti' , ni j)

- -',,,J. . . * \,o ,,, - . .- * ' . " - -.. • " . . ,,- .. .. . . , .*.
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where f(.) is a suitably chosen function of a,, 3j. and nij . For

example f(x,y,z) = fl(x)f 2 (y)f 3(z). As another possibility, we may

also consider the model

pij = i + i + Bj + Yij (5°8)

as in two-way classification with interaction.

GooJman [61 discussed the model (5.7) when n is written in

terms of its eigenvalues and eigenvectors. O'Neil ([171, [18], F19])

discussed some aspects of the asymptotic distribution theory associated with

finding the rank of the matrix ,. In this section, we propose various

test procedures for determination of the rank of c and investigate some

problems on the asymptotic distributions of the test statistics.

We now discuss the problem of testing for the rank of the matrix .

If we know in advance the rank of c, we can use that knowledge in esti-

mating the unknown parameters more accurately. For example, the maximum

likelihood estimates of pij's when the rank of F is one are not the same

as when the rank of F is greater than one.

Now, let B = (bi j) where

b n. /ni . n. . (5.9)

Then, using the spectral decomposition of B, we have
a . . .

B + *fl*'5 + (5.10)
~0~0 0 u-1 U ~U~

where o 1,

= ((nl /n) 112 (n /n) a2
u 1. u na+l. u,a-l

. . . . . . . .
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_n*: ((n1 /n)2n ,(n.b+l /n)2n .. ~u n~l ul"'" b~l u,b+l )

ol " o,a+l = ,nol ... no,b+ l  l50 o =1

Also, > 6 > "" > 6 are the eigenvalues of B, is the eigen-

vector of BB' corresponding to 6 and n* is the eigenvector of B'B,_a
corresponding to 6 . Now, let Hi:6 = 0 (i = 1, 2, ..., a) and H = i H

We can use S . 2) to test H where (.) is a suitable function of
a

^2 For example, we can use A2 + + 62 or II as test statistics.' .. a 61.... a r a e t t t s i s

Here we note that n(6 + ... + 6a) is equivalent to 0o where

o ZY{nij - (ni n. /n)}2/n i n "  (5.12)

When H1 is true, O'Neil [17] showed that the joint distribution of

no2, ..., n62 is the same as the joint distribution of the eigenvalues

of the central Wishart matrix with ab degrees of freedom. Percentage

points of the largest eigenvalue of the central Wishart matrix are given

in Krishnaiah [8].

We have discussed before some procedures to test for the overall

hypothesis6 2= 62 = 0. We will now discuss procedures for testing

the subhypotheses Ht when Hl is rejected. The hypothesis Ht is the same

as the hypothesis that the rank of F is t. We will first consider the
-2 + -2 I hspo

test procedure based upon T1 where T 6 + + 6 In this pro-q q a

cedure, we accept or reject H1 according as

T c (5.13)
1 > la±

where

PrT 1 H1J = (< -I.). (5.14)
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if H is rejected, the hypothesis H is accepted or rejected according
q

as

q I "

Starting with the test based upon T1 we can also draw inference on test-

ing the hypothesis H as described below; here H.. denotes the hypothesisi 3 1 ,]

2
pij :Piq for given values i,j. The X test statistic can be written as

z2 z' (5.16)

where

7' = (Zl,..,lb+l,...,z a +ll,...,z a +lb+l

and

ij ij i(n i.n /n)) i. n j

But = max(c'z) 2 when the maximum is taken over all non-null c subject

to the restriction that c'c = 1 So, when H1 is rejected, we can test

the subhypotheses H . as follows. We accept or reject H. against two-

sided alternatives according as

2
z < c I . (5.17)

t u
We can test the hypothesis ) ' H.. as follows. We accept or reject

i=l j=l 13

the above hypothesis against two-sided alternatives according as

t u17 7 2 <
L L zij >  c1 ai=l j=l

t u
The hypothesis ( 1l H.. implies the hypothesis

j=l j=l 13

t u t u
. pi = Pi) q .)

i=l j=l 3 i=1
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We will now discuss the problem of testing the hypotheses Hij against

the alternatives Aij simultaneously where Aii :Pij > piqj. We accept

or reject H.. against A.. according as

z ij >' c2a (5.18)

where

Prnax zij < c2 lHl= (1-a) (5.19)

and max zij denotes the maximum of the elements of z, The asymptotic joint

distribution of the lelments of z is a singular multivariate normal dis-ribution.

But, bounds on the critical values c2a can be obtained by using Poincare's

formula. Similarily, we can propose procedures to test hypotheses H..
1j

against At. where A . <P
^2

We now discuss the test based upon pl. We accept or reject 1I

according as

^2 <  C2 (5.20)

where

P[^ c2 lHI2 = (1-C) (5 21)

If H1 is rejected, we accept Or reject H. according as

> c2. (5.22)

We will now derive the asymptotic nonnull distributions of certain
29 ^ 2

functions of no ,...,no. The following lemmas are needed in the sequ2l.

Lemma 5,1 Let U: p x p be a symmetric matrix which can be expressed as

U = A + C U (1 ) + C2 U( 2 )  + ... (5.23)

,.. . . . .. . . .
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when A = diag(X,, .•• )• Also, let

S : 11 -+ 
e (5.24)

for i = 1,2,...,r, qo = 0 and q = a. In addition, let l -> " > p

denote the eigenvalues of U. Then

- e + (1) + 2 T (2) + (5.25)
cc Ot Ot Ct

where

Z T ( I ) =-Ltr U(l)

q CV

-~( 2) 1~-t u(2) + (1 (1)
qcL - LC

z t r U +Ue c'2O B 8 q) -L 0 1 L - B

UM UM ... U

U 21 u22 2r

Url r2 ... Urr

The above lemma is implicit in Kato [24]. It is also proved in

Fujikoshi [5] by following the same lines as in Lawley [13].

Lemma 5.2 Let , Z,.,a ), (i=l,2,...,k), be analytic functions of

.around and let X"s have multiplicities as in (5.24),l" 'aa on ''a a n lt i

We assume that

.. . . . . . . . . . . . . . . *

. .. . . . . . . . . . . . . ..o

* .-..----- - . .
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aTi( ill .. ,ta)

a

a 2Ti (ti ...I)

at i at J2C aa (5.26)

3
a Tt , ... , a

at . at a .iJ i2J3  a-

~1. ~ 13 -A

for j 1 j j2 j J' j3 E ,, a) ' = (Xl,...,aa) and 

denotes the set of integers q+" q + 1,...,ql +'"+ qcc. Then

r r
a. U + " ( { U ae tr{U + 6 -  U 1 U )

"a-i1 aa J ia Ma a8 a0, 00In Boa

+ a tr U( ) trUM +---1 (5.27)

il. for i = ,?,,..,k. Let H and K be orthoonal matrices and let

R= H'BK.

If we choose the first columns of H and K such that

h = (n. /n) i : 1,2,...,(a+l)

kjo (n.j/n) j =

. .. . . , . . - - . U . - . .-. - * . -*--.. , ,, .*.hi". -: **= ** ,



-53-

* then

1 OR

Similarly, let Q H*IFK* where the first columns of H* and K* are given by

h Pi

* Then

/1 0

1 0

* So,

0 RR 1O ' '

*It is known (see O'Neill [17] )that > 2 are the eigenvalues of RR'

*whereas o > >2 are the eigenvalues of OQ'. Next, let

X =/n- (R-9~) =(x.) (5.28)

* where R= (r.) and Q (w (.). Then x. .'s are known (see O'Neill [171 ) to

be asymptotically distributed as multivariate normal with mean vector 0 and

* the elements of the covariance matrix are given by

Co~ij' kpz 'j.kz (say). (5.29)

JA
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Using (5.28), we obtain

RR' = Q' + n(X' + X) + n-lxx'. (5.30)

Now, let M: axa and L: bxb be such that

M'QL = (diag(pl,...,Pa)IO) = D

Then,

S = M'RR'M : V + 1 V(1) + V( (5.31)n

where V =D D', V(1 ) = (V (1)) = D Z' + ZD', Z = (zij) : M'XL, and V(2 ) =(V(2)

* = M'XX'M. Here V(1) and V(2 ) are of order q xq,. Now, let R= 1 i

and x 's have multiplicities as in (5.24). Then, usinQ (5.26), we obtain

Li = vf{T( i, o., p ) - Ti(X,...xp

r+r (2) + --I ( ) ( )

=:I a. tr V(1) + 1 atr{V( +
'a- a1

+ jai trV (1) tr V(l)]

+ terms of higher order. (5.32)

*! But,

2Pzl (P2'12 + P1 z2 1 ) ... (PaZla + PlZa.

'(1)

V(i (piz2 1 + P2z1 2) 2p2 z 2 2  .. (PaZ2a + P2Za2)

(PiZai + Pazla) (P2 Za 2 + PZ 2 a) . 2Pa Za

(L

(5.33)
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MIXX'M1  M.XX.M2 ... MXX'Mr.

v M 2  'M1  MXX'M2 ... M'XX'Mr

-. M' M'XX' M
r 1 r 2 r r

where M = (Mi,..,,Mr) and Mi is of order axqi. So,

rL. = 2 a. (z_ +1,q l+ + .+ z )1 l _ a ql "''+q 1  ""+q-+ I  " q+"q q+"q

= b!Zo (5.35)

-where

b. (2a illt ,....2a. a 1' (5.36)
ii 1.ql irr.. r-

and z (z1,...,zaa). The asymptotic distribution of B'z is multivariate
o *a

* normal with mean vector 0 and covariance matrix B'z B where z is the

* covariance matrix of z and B = (bl,...,bk). We can summarize the above results

as follows:

* Theorem 5.1 We assume that Pi's have multiplicities as given below:

***'= a +.. ( a (5.37)

fdA a = 1,2,...,r where qo = 0, ql +...+q = a. Also, let LI,...,Lk be functions of

-2" '2 satisfying the assumptions (5.25). Then, as n , the joint distri-

. bution of L1,...,Lk is multivariate normal with mean vector 0 and covariance
matrix B'Z B where z is the covariance matrix of z, B :(b1,...,bk and b.'s

are defined by (536).
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r

Now, let a'try (1) : 0 for each i. Then,

L. = n{T (I 9 - T (9xl'X
1 i l'iI'.

= (vl,...,9Vr) A./1

Vr,

where

Ai = (ai )

V1 = 2(lz11 +"+ P z qlq l)

2 = 2(pql+IZql+l ql+I +..-+ Pql q2Zql+q 2 ,ql+q2)

vr =2(ql+..o+qr-l+lZql+ ...+qr-l+l,ql + . +qr-l+l+ '' "

+ Pql+..o+qrZql+...+q r ,ql+...+qr );

Since o's have multiplicities, we can write v = (vi,...,vr)'as v = Ezo where

E ( i,...,e),

el l 2el(lq, 0.....0)

e 202(° ... 01' 2'0" .,0)

-- ( ..... 0,1

As n - , v is distributed as a multivariate normal with mean vector 0 and co-

variance matrix Ez E'. So, the joint distribution of LI,...,Lk is the same

as that of correlated quadratic forms discussed in Khatri, Krishnaiah and Sen [7].
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